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Abstract. Measurements of infrared polarized reflectance spectra of single-crystalα-Bi2O3

have been made at room temperature in the wavelength range from 30 to 4000 cm−1 for
different orientations of the wave vectork and the electric fieldE of the incident radiation
relative to the crystallographic axes. On the basis of Born and Huang’s theory, relations between
characteristics of TO modes of the monoclinic lattice and the reflectivity for the orientations
used are established. Dipole momentum orientations, frequencies, strengths and linewidths of
almost all of the IR-active modes predicted by the factor-group analysis for theα-Bi2O3 were
determined. Good agreement between experimentally measured and model spectra was achieved.
It was shown that in order to obtain reliable values of parameters of Bu modes three spectra for
different orientations ofE in the ac-plane should be fitted simultaneously. It was found that
Bu modes have significantly greater intensities than Au modes. The effect of the rotation of the
principal dielectric axes within theac-plane was studied.

1. Introduction

A study of the bismuth oxide vibrational spectra is of special interest nowadays because
this compound is a parent substance for several families of high-Tc superconductors: the
copper-containing layered compounds Bi–Sr–Ca–Cu–O [1, 2] and copper-free perovskite-
type substances BaPb1−xBixO3 [3] and Ba1−xKxBiO3 [4, 5]. Several groups have presented
infrared as well as Raman spectra of Bi2O3 [6, 7, 8, 9]. All of the spectra were measured
only for polycrystalline samples. In [6, 9] the IR absorption spectra were measured and in
[7] the IR reflectance spectrum was reported. The existence of a large number of IR-active
lines in a limited energy range embarrassed determination of their characteristics. In the
polycrystalline spectrum, modes of all species are presented simultaneously; therefore it
was practically impossible to make an assignment of each particular line. For this reason
we used a single-crystal sample ofα-Bi2O3 and studied reflectance spectra for different
orientations of the wave vectork and the electric fieldE of the incident wave relative to
the crystallographic axes in order to obtain full information about lattice vibrations. Our
polarized spectra revealed large anisotropy of dielectric properties ofα-Bi2O3 in accordance
with the complicated structure of its primitive cell.

The α-phase of the bismuth oxide has the monoclinic structure (space groupP 21/c, or
C5

2h) [10]. A unit cell of α-Bi2O3 contains four formula units; each atom is arranged in a
position of general type. Factor-group analysis enables one to classify the optical vibrational
spectrum ofα-Bi2O3 in the following way [10]: 30 modes(15Ag + 15Bg) are active in the
Raman scattering; 27 optical vibrations(14Au + 13Bu) manifest themselves in the infrared
spectra. Selection rules for the IR-active vibrations [11] lead to the conclusion that dipole
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momenta of the Au modes are oriented along theb-axis and the Bu modes have momenta
lying in the ac-plane. Due to the presence of the inversion centre, IR and Raman modes
are mutually exclusive.

The compoundα-Bi2O3 belongs to the class of optically biaxial crystals. The principal
values of its dielectric tensor̂ε(ω) are all different. In the monoclinic crystal one of the
principal dielectric axes coincides with theb-axis; the others lie in theac-plane, but their
directions are not determined by the symmetry considerations. Moreover, it turns out that
the directions of these axes depend on frequency [11]. Therefore, conventional dispersion
analysis [12, 13], based on the scalar relations between the electric fieldE and polarization
P , can be applied for determination of the characteristics of Au modes only. Correct values
of Bu-mode parameters can be obtained by analysis of several reflectance spectra for the
vector E lying in the ac-plane, using formulas for the dielectric tensor and reflectivity
which take into account rotation of principal axes. We have introduced for Bu modes, along
with the usual frequency, strength and linewidth, an additional angle parameter describing
the direction of the dipole momentum associated with a particular lattice vibration. The
reflectivity for the geometries used was expressed on the basis of these parameters using
Born and Huang’s theory of crystal dynamics [14] and principles of crystal optics [15, 16].
The simulation of all of the measured spectra by adjustment of the above-mentioned phonon
parameters was performed on the basis of established relations. We succeeded in obtaining
good quantitative agreement between the model and experimental spectra by introducing
a reasonable number of modes, which confirms the validity of the proposed model. In
this paper we shall describe this model in detail, and focus on the peculiarities of the
corresponding technique of mode characteristic determination. Then we will discuss the
parameters obtained for the TO modes ofα-Bi2O3. At the end we will analyse to what
extent the effect of dielectric axis rotation is exhibited in the far infrared.

2. Experimental details

Single-crystalα-Bi2O3 was obtained by hydrothermal synthesis in alkaline water solutions.
Synthesis was carried out in an autoclave at a temperature of about 573 K and pressure of
8 MPa. The x-ray spectral microanalysis performed with the spectrometer CAMEBAX-301
demonstrated the absence of impurities in the crystal with an accuracy of about 0.01 wt%.
At room temperature the unit-cell parameters of the monoclinic crystal latticea = 5.8504Å,
b = 8.1708 Å, c = 7.5136 Å, β = 113◦ were in agreement with the previously published
data [10]. The crystal had a good-quality natural face nearly parallel to theac-plane (with
an accuracy of∼4◦) having dimensions of about 4× 7 mm. An additional side parallel to
the b-axis and perpendicular to thea-axis with the dimensions 1.5 × 7 mm was cut and
mechanically polished.

The reflectance spectra were studied using two grating-type spectrophotometers, IR-460
(4000–400 cm−1) and FIS-3 (400–30 cm−1), each having a special reflection attachment
constructed after the monochromator. A set of light sources, detectors and grid polarizers
with overlapping working ranges were used. The polarizer was mounted between the
monochromator and the sample. The varying of the polarization angle was performed by
rotation of the polarizer; the orientation of the sample was always fixed relative to the optical
set-up. The infrared beam was focused on the crystal surface at an average incidence angle
of about 15◦. A special manipulator was designed to automatically interchange the sample
and a gold mirror with good accuracy. In the far-infrared region, when measurements were
executed slowly with large accumulation, the sample and mirror were interchanged at any
frequency point to remove the influence of the signal drift. The spectral slit width was
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maintained to be within about 1–2% of the wavelength. The noise-to-signal ratio varied
from 1 to 4% (in several spectral regions the signal was noticeably diminished as a result
of the double attenuation of the light by the monochromator and the polarizer). The degree
of polarization was better than 95% for all wavelengths.

Figure 1. The reflectance spectrum, measured at room temperature when the electric field
E of the incident radiation was directed along theb-axis. Experimental points are shown by
open squares. The solid curve corresponds to the model spectrum for parameters of Au modes,
presented in table 1. Vertical lines mark the frequencies of modes that were obtained. In the
inset the low-frequency part of the spectrum is shown.

In figures 1 and 2 four reflectance spectra measured at room temperature in different
reflecting geometries are presented for the range 30–700 cm−1, where all the phonon
frequencies are observed. In the first case (figure 1) light was reflected from the face
oriented perpendicular to thea-axis. The electric fieldE of the incident radiation was
directed along theb-axis. The other three spectra (figures 2(a)–2(c)) were measured when
the reflection was from thea–c-face. The angleχ between the direction ofE and thea-axis
was 0◦, 45◦ and 90◦ respectively (all of the angles introduced in the current paper, which
describe the orientation of a certain vector within theac-plane, were measured anticlockwise
relative to thea-axis; see figure 3). The particular choice of reflectance geometries was
determined by considerations discussed in section 4. We can see from figure 2 that the
varying of the electric field direction within theac-plane results in a very strong variation
of the spectrum shape. For example, the value of reflectivity at 310 cm−1 varies from
0.15 for χ = 0◦ to 0.8 for χ = 90◦. Before discussion of the experimental data and their
numerical analysis we shall introduce a simple model which links reflectivity with phonon
parameters of the monoclinic lattice.

3. The dielectric tensor in the far infrared

Born and Huang in their fundamental work [14] have given a phenomenological and
microscopic description of the lattice dynamics in the infrared region. They have shown that
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Figure 2. Reflectance spectra, measured at room temperature for different directions of the
electric field E of the incident radiation within theac-plane. The direction is described by
the angleχ between the vectorE and thea-axis. (a)χ = 0◦; (b) χ = 45◦; (c) χ = 90◦.
Experimental points are shown by open squares. Solid curves correspond to the model spectra
for parameters of Bu modes, presented in table 1. Vertical lines mark the frequencies of modes
that were obtained.

both approaches lead to the following tensor of the dielectric functionε̂(ω) (α, β = x, y, z):

εαβ(ω) = ε∞
αβ + 4π

∑
j

MjαMjβ

ω2
0j − ω2 − iγjω

(1)
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Figure 3. The relative arrangement of the cartesian (x, y, z) and
crystallographic (a, b, c) systems of coordinates. The axesy andb are collinear
and directed away from the reader.

where ω0j , γj , and Mj are the frequency, damping coefficient, and effective dipole
momentum corresponding to thej -mode (the summation is performed over all of the
IR-active modes);ε∞

αβ is the contribution from the high-frequency electronic excitations.
Rigorous microscopic analysis of the dissipation caused by the potential anharmonicity gives
frequency-dependentγj [14, 17]. However, an approximation in whichγj is supposed to
be constant is widely used. Justification of such an approach may be found, e.g., in [13].
In this paper we shall also setγj as a constant mode parameter. So we shall not directly
consider multi-phonon resonances, which should be described by a theory of the next order.

It is important that due to the existence of the macroscopic electric field caused by the
longitudinal component of the lattice polarization, all phonon parameters depend on the
direction of the wave vectork even when|k| → 0 [14]. One can eliminate this ambiguity
by consideration of only TO vibrations. Orientations of the crystal surface and the incident
radiation were always chosen so that the vectors of the electric fieldE, displacementD and
polarizationP were perpendicular to the wave vectork. In this case the electromagnetic
wave interacts only with TO lattice modes.

According to expression (1), the contribution of each vibrational mode to the infrared
properties of the anisotropic crystal is in general described by five real parameters:ωj , γj

and three components ofMj . Using symmetry considerations it is possible to reduce this
number; that is, vectorMj for each Au mode has only one component parallel to theb-axis;
the direction of the Bu-mode dipole momentum lying in theac-plane can be described by
one angle parameter.

Let us introduce now a cartesian right-handed system of coordinatesxyz related to the
crystallographic system as follows:x ‖ a, y ‖ b, z ⊥ x and⊥ y (figure 3). In this system
the tensor̂ε(ω) has the following structure:

ε̂ =
 εxx 0 εxz

0 εyy 0
εzx 0 εzz

 . (2)

According to (1) non-zero components of (2) can be written in the form

εyy = ε∞
yy +

∑
Au modes

ω2
pj

ω2
0j − ω2 − iγjω

(3)

εxx = ε∞
xx +

∑
Bu modes

ω2
pj cos2 θj

ω2
0j − ω2 − iγjω

(4)

εzz = ε∞
zz +

∑
Bu modes

ω2
pj sin2 θj

ω2
0j − ω2 − iγjω

(5)

εxz = εzx = ε∞
xz +

∑
Bu modes

ω2
pj cosθj sinθj

ω2
0j − ω2 − iγjω

. (6)

Here we have substituted for the effective dipole momentum with the corresponding plasma
frequencyω2

pj = 4πM2
j and have introduced for each Bu mode the angleθj between vector
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Mj and thex-axis.

4. Calculation of the reflectivity

Given model expressions forε̂(ω), the reflectivityR(ω) for each geometry can be calculated
using the boundary conditionsE1t = E2t , H1t = H2t . In this section we shall always
consider normal incidence of a linearly polarized plane wave onto the crystal surface.
Different cases of reflectance geometry may be classified by the directions of the vectorsE
andk of the incident wave. The wave vector of the refracted wave is also perpendicular to
the surface because the tangential component ofk must be invariant. We shall analyse two
special cases of reflectance geometry:E ‖ b, k ‖ (a–c) andE ‖ (a–c), k ‖ b. The reasons
for this choice are: (i) the set of spectra under consideration must contain information about
all of the vibrational modes; (ii) each spectrum should depend on only one mode species
(Au or Bu); (iii) the incident wave must excite only TO vibrations inside the crystal.

4.1. The case whereE ‖ b, k ‖ (a–c): probing ofAu modes

As the vectorE is directed along the principal dielectric axis, the propagation of the
electromagnetic wave inside the crystal occurs in the same manner as for the cubic crystal
with ε = εyy . So, the direction ofk within theac-plane is of no importance. The reflectivity
is given by the usual Fresnel formula for derived cubic crystals:

R =
∣∣∣∣∣
√

εyy − 1
√

εyy + 1

∣∣∣∣∣
2

whereεyy is determined by Au modes only (equation (3)).
The conventional method of treatment of such a spectrum (dispersion analysis) is that

of selecting the phonon parameters in (3) giving the best agreement between the model and
the experimentally measured spectrum [12].

4.2. The case whereE ‖ (a–c), k ‖ b: probing ofBu modes

This case is more complicated than the first one, because the directions of the principal
axes ofε̂(ω) in the ac-plane are not fixed. From Maxwell’s equations and the boundary
conditions an important conclusion follows: that the vectorsE, D andP of the refracted
wave lie in theac-plane. This means that only TO modes are excited.

It is well known [15, 16] that to a certain direction ofs = k/|k| inside an anisotropic
crystal there correspond exactly two waves with different refractive indicesn and mutually
perpendicular amplitudes of the electric fieldE (when this direction does not coincide with
the optical axis). We shall designate all of the values corresponding to these waves by the
subscriptsu and v. The valuesnu, nv and vectorsEu, Ev can be found by solving the
algebraic system of equations [16, 17]

[εαβ − n2(δαβ − sαsβ)]Eβ = 0. (7)

In our particular geometry, we shall consider onlyx- andz-components of the electric
field becauseEy is zero. In contrast, onlysy is non-zero. Hence the system (7) is simply
the equation for the eigenvectors and eigenvalues ofε̂:(

εxx − n2 εxz

εzx εzz − n2

)(
Ex

Ez

)
= 0.
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Setting the determinant to zero, we obtain

n2
u,v = (1/2)(εxx + εzz ±

√
(εxx − εzz)2 + 4ε2

xz).

As ε̂ is symmetrical, an orthogonality is operative:(Eu · Ev) = EuxEvx + EuzEvz = 0.
Let us consider normalized vectorseu,v = Eu,v/|Eu,v|. Their components can be written
in terms of the angleϕ betweenEu andx (or betweenEv andz):

eu =
(

cosϕ
sinϕ

)
ev =

( − sinϕ

cosϕ

)
.

Equation (7) is valid even for the case of strong relaxation (when the imaginary part is
comparable with the real part of the dielectric function). As a result of damping, thex- and
z-components ofEu andEv are generally shifted in phase; this means that the corresponding
waves are elliptically polarized. In this case the value ofϕ becomes complex. It is related
to the components of̂ε by a simple formula:

tan 2ϕ = 2εxz

εxx − εzz

=
(

2ε∞
xz +

∑
j

Lj sin 2θj

)/(
ε∞
xx − ε∞

zz +
∑

j

Lj cos 2θj

)
(8)

where we have denoted the Lorentziansω2
pj /(ω

2
0j − ω2 − iγjω) for brevity by Lj .

Let us now present the electric field outside the crystal as a sum of incident and reflected
waves (omitting the time factor exp(−iωt)):

Ei exp(iωy/c) + Er exp(−iωy/c).

In the crystal volume, the wavesEu andEv are excited:

Eueu exp(iωnuy/c) + Evev exp(iωnvy/c).

To find Eu and Ev we need to consider the boundary conditions on the crystal surface
(where we assumey = 0). They may be written in the form

Ei + Er = Eueu + Evev (9)

Ei − Er = nuEueu + nvEvev. (10)

Using the orthogonality ofeu andev, let us decompose the incident wave using them as a
basis:

Ei = (Ei · eu)eu + (Ei · ev)ev. (11)

Substitution of (11) into the sum of (9) and (10) yields

Eu,v = 2(Ei · eu,v)

1 + nu,v

.

After subtraction of (10) from (9) we may immediately expressEr usingEi :

Er = ru(Ei · eu)eu + rv(Ei · ev)ev (12)

where theru,v = (1−nu,v)/(1+nu,v) are complex reflectivities corresponding to the waves
Eu andEv.

It is convenient to rewrite relation (12) in the formEr = r̂Ei , introducing the complex
reflectivity matrix:

r̂ =
(

rue
2
ux + rve

2
vx rueuxeuz + rvevxevz

rueuxeuz + rvevxevz rue
2
uz + rve

2
vz

)
=

(
ru cos2 ϕ + rv sin2 ϕ (ru − rv) cosϕ sinϕ

(ru − rv) cosϕ sinϕ ru sin2 ϕ + rv cos2 ϕ

)
. (13)
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The experimentally obtained reflectivity is the ratio between the intensities of the
reflected and incident waves:

R = Ir

Ii

= |Erx |2 + |Erz|2
|Eix |2 + |Eiz|2 . (14)

To calculate the reflectivity it is necessary to introduce the angleχ betweenEi and the
x-axis:

Ei = Ei

(
cosχ
sinχ

)
. (15)

Substituting in (15) and (14) using the matrix (13), after some transformations we can
obtain the final expression for the reflectivity, containingϕ andχ in the combinationϕ−χ :

R =
∣∣∣∣ ru + rv

2
+ ru − rv

2
cos 2(ϕ − χ)

∣∣∣∣2

+
∣∣∣∣ ru − rv

2
sin 2(ϕ − χ)

∣∣∣∣2

. (16)

The following question arises: how many spectra for different anglesχ should be
measured to extract information about the parameters of Bu modes? Evidently, knowledge
of only one spectrum is insufficient, because in comparison to the first case an excess of
parameters is obtained. To remove this excess, measurement of several spectra must be
performed. It turns out that when three spectra are known, measurement of an additional
spectrum yields no extra information in the framework of the current model. To prove this,
let us focus on theχ -dependence of the reflectivity. From (16) we may derive thatR(χ)

is an oscillating function with the periodπ :

R(χ) = R0 + A sin 2χ + B cos 2χ

where

R0 =
∣∣∣∣ ru + rv

2

∣∣∣∣2

+
∣∣∣∣ ru − rv

2

∣∣∣∣2

(| cos 2ϕ|2 + | sin 2ϕ|2)

is the reflectivity of non-polarized light; we shall not write the cumbersome expressions for
the coefficientsA andB here. Suppose we have measured three spectraR(χ1, ω), R(χ2, ω),
R(χ3, ω). As may be easily checked, the spectrum at any other angleχ can be presented
as a linear composition:

R(χ, ω) = α1R(χ1, ω) + α2R(χ2, ω) + α3R(χ3, ω)

with ω-independent coefficients:

α1 = sin(χ − χ2) sin(χ − χ3)

sin(χ1 − χ2) sin(χ1 − χ3)

α2 = sin(χ − χ1) sin(χ − χ3)

sin(χ2 − χ1) sin(χ2 − χ3)

α3 = sin(χ − χ1) sin(χ − χ2)

sin(χ3 − χ1) sin(χ3 − χ2)
.

In particular, the following relation holds:

R(0◦) + R(90◦) = R(45◦) + R(−45◦).

We have intentionally checked that within experimental errors this relation is satisfied for
all wavelengths.

We have found that the most reliable values of phonon parameters can be obtained as
a result of simultaneous fitting of three spectra for different angles of polarizations. In this
work we have chosen the most natural set of angles:χ = 0◦, 45◦ and 90◦.
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5. Results and discussion

The relations derived in the previous section were applied to the simulation of experimental
spectra and the determination of the parameters of Au and Bu modes ofα-Bi2O3. In
figures 1 and 2 model spectra are shown by solid curves. The fitting was carried out by
the least-squares method. Minimization ofχ2 was performed by the Marquardt technique
described in [18], with analytical calculation of the partial derivatives ofχ2 based on model
parameters. Each experimental spectrum contained 1000 frequency points in the spectral
region processed (30–1000 cm−1). This was sufficient for introducing 11 Au modes and
11 Bu modes to satisfactorily describe all essential spectral peculiarities; it is slightly less
than the value that the factor-group analysis predicts: 14Au + 13Bu. The remaining three
Au modes and two Bu modes are possibly too weak to be observed; besides, some wide
bands (especially ones with frequencies higher than 200 cm−1) may be composed of several
overlapping modes. For example, an additional weak mode with a frequency of about
400 cm−1 possibly should be added to the presented set of Au modes, and a mode with
a frequency of about 340 cm−1 possibly should be added to the set of Bu modes. The
forthcoming experiments at low temperatures would probably make it possible to locate the
missing modes.

Table 1. Characteristics of the observed IR-active TO modes obtained forα-Bi2O3.

Frequency Plasma frequency Damping Polarization Strength Linewidth
ω0 (cm−1) ωp (cm−1) γ (cm−1) angleθ ω2

p/ω2
0 γ /ω0

Au modes
37 47 1.1 — 1.59 0.030
58 34 2.0 — 0.35 0.034
99 61 3.9 — 0.38 0.039

130 88 6.0 — 0.45 0.046
153 99 11.5 — 0.41 0.075
185 140 12.3 — 0.57 0.066
209 299 17.8 — 2.04 0.085
280 463 36.5 — 2.72 0.130
314 453 44.8 — 2.08 0.142
486 302 32.6 — 0.38 0.067
544 161 18.6 — 0.09 0.034

Bu modes
58 145 2.5 31◦ 6.10 0.042

102 422 6.8 −48◦ 17.0 0.067
145 417 3.8 48◦ 8.24 0.026
175 377 7.5 17◦ 4.64 0.043
179 847 17.3 −86◦ 22.4 0.097
222 616 22.7 12◦ 7.68 0.102
280 578 29.4 87◦ 4.26 0.105
362 377 33.9 −43◦ 1.08 0.094
401 622 30.8 23◦ 2.41 0.077
414 301 26.4 −39◦ 0.53 0.064
504 228 19.8 10◦ 0.20 0.039

Model parameters of the Au and Bu modes are presented in table 1. Convenient
dimensionless constants—the strengthω2

p/ω2
0 and relative linewidthγ /ω0—are also

presented for each mode. The mode frequencies obtained are shown in figures 1 and 2
by vertical dotted lines for comparison with the spectral peculiarities. The components of
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the high-frequency dielectric tensorε̂∞ were adjusted along with the other parameters. We
found the following values for them:ε∞

xx = 6.2, ε∞
xz = −0.3, ε∞

zz = 6.5, ε∞
yy = 4.6. The

ratio between the number of adjusted parameters (including components ofε̂∞) and the
number of experimental points considered was approximately 1/30 for Au modes and 1/60
for Bu modes. To assess the parameter-adjusting errors caused by the signal noise we have
repeated the adjustment of the parameters several times after addition of artificial noise
having the dispersion of the real noise to the signal. During this procedure, the values of
all of the frequenciesω0j varied by no more than±1%. The plasma frequenciesωpj and
damping constantsγj were less stable: they varied by up to±15%. The anglesθj of the Bu

modes turn out to be quite well defined: they varied on average by±1◦; maximum variation
for the 175 cm−1 mode was±5◦. This fact confirms the applicability of the current method
for determination of polarizations of Bu phonons. It is noteworthy that we succeeded in
firmly resolving two closely located Bu modes, at 175 and 179 cm−1. This was possible
because, owing to the different polarization anglesθj , these modes contribute to the three
spectra in figure 2 in different ways. The ordinary dispersion analysis technique [12] does
not allow one to resolve such overlapping bands. The credibility of the results (especially
for the Bu modes) is also seen from the fact that formal fitting of measured spectra with the
Fourier series with noise filtering [19] with the same accuracy requires approximately five
times as many parameters as we used.

We have established that the previously observed intensive low-lying mode at 37 cm−1

belongs to the set of Au modes (in accordance with the suggestion in [9]). Thus, the
behaviour of the reflectivity in figures 2(b) and 2(c) near the low-frequency boundary of the
spectral region studied points to the existence of a very low-lying Bu mode in the vicinity of
30 cm−1. Unfortunately, we could not see the left-hand side of this band, so its parameters
remain unknown. In this respect it is interesting to note that the analysis of the polarized
Raman spectra of single-crystalα-Bi2O3 [20] showed, with confidence, that there are no
Raman bands lower 50 cm−1 (down to 15 cm−1).

The highest frequencies that we observed were 544 cm−1 for Au modes and only
504 cm−1 for Bu modes, whereas in [9] frequencies of 598 cm−1 and 587 cm−1 were
reported. The highest frequencies, obtained from polycrystalline reflectance spectra [7], are
in accordance with our data.

Inasmuch as the previous measurements ofα-Bi2O3 IR spectra [6, 7, 9] were made
on powder samples, it was impossible to make an assignment of the peculiarities found
in the spectra to the Au and Bu modes. The only attempt at an assignment undertaken in
[9] was based on the results of calculations of lattice vibrations performed by the Wilson
Green function matrix method. On the whole, the satisfactory correspondence between the
frequencies obtained from our analysis and the frequencies reported by other authors [7, 9]
is obtained only for modes with wavenumbers lower than 200 cm−1; for the remaining
spectral region the correspondence is poorer. Our results agree better with data obtained
from the reflectance spectrum [7] than with those from the absorbance spectrum [9]. So the
interatomic interactions involving the oxygen atoms determined in [9] need refinements.

The method proposed in the current paper gives more reliable information on phonon
frequencies, the problem of mode assignment being solved automatically. New information
about polarizations of Bu modes is an additional reference for checking of interatomic
potential models. Plasma frequencies should also be used along with other parameters
because they contain information about effective ionic charges. Exact information about
Bi–O bonding is necessary to provide answers to many questions. In particular, it is of
interest for the explanation of recently observed unusual magnetic properties ofα-Bi2O3

[23]. Besides this, bismuth’s complicated valence properties in oxide systems have been
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extensively discussed [21, 22].

Figure 4. The frequency dependence of the real (solid line) and imaginary (dotted line) parts
of εyy (a) and(1/2)(εxx + εzz) (b).

In figures 4(a) and 4(b) the complex dielectric functions along theb-axis, εyy , and in
the ac-plane, (1/2)(εxx + εzz), are shown. The latter combination was chosen in such a
form because: (i) it is invariant relative to the rotation of the system of coordinates within
the ac-plane; (ii) it does not depend on the anglesθj ; (iii) for a cubic crystal it would be
equal just to the dielectric function. The maxima of Imε(ω) determine the frequencies
of the TO modes. From a comparison of figures 4(a) and 4(b) (note the different vertical
scales!) we come to an important conclusion that on average Bu modes are significantly
more intensive (have greater effective charges) than Au modes. Correspondingly, plasma
frequencies and especially mode strengths of Bu modes are on average greater than those of
Au modes (see table 1). Two Bu modes, at 102 cm−1 and 179 cm−1, are the most outstanding
as regards strength. Another qualitative difference between the two mode species lies in
the frequency distribution of the line intensities: that is, the most intensive Au modes
(excluding the mode at 37 cm−1) are located between 185 cm−1 and 314 cm−1, whereas
the strongest Bu modes lie in the range from 58 cm−1 to 222 cm−1. The observed effective
charge distribution anisotropy needs to be explained by calculations in the framework of an
interatomic potential model.

It follows from the preliminary results of our calculations as well as from [9] that
the lowest IR-active modes with wavenumbers below 150 cm−1 are related mainly to
displacements of Bi atoms. Optical modes with intermediate wavenumbers are evidently
determined by movements of both Bi and O atoms; the highest modes are predominantly
connected with oxygen displacements. So we may infer that the intensity of Au modes
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is specified mainly by the effective charges of O atoms, while the intensity of Bu modes
pertains equally to Bi and O effective charges.

Using the parameter values obtained, we have derived from equations (3)–(6)
approximate values of the components of the static dielectric tensor at room temperature:
εyy(0) = 15.7, εxx(0) = 37.0, εxz(0) = −0.4, εzz(0) = 60.1. One can see that the largest
value of the static dielectric constant is along thez-axis (perpendicular to thea-axis), and
the smallest value is along theb-axis. Substantial differences betweenε(0) in the ac-plane
and ε(0) along theb-axis are a consequence of the above-mentioned distinction between
intensities of Au and Bu modes. The anisotropy of̂ε(0) within the ac-plane is largely
determined by the polarization directions of the Bu modes at 102 cm−1 and 179 cm−1,
having the largest strengths (table 1).

Figure 5. The frequency dependence of the anglesϕR (solid curve) andϕI (dotted curve)
defined by equation (17). Solutions of (17) in different spectral intervals were chosen in such a
way as to obtain a continuous resulting function.

One of the key optical features of monoclinic crystals is rotation of the principal
dielectric axes within theac-plane with frequency variation. As long as all of the
components of the dielectric tensor are known in the framework of the current model,
it is possible to study this effect numerically. The rotation of the dielectric ellipse can be
described by the angle between its principal axis, corresponding to the maximal eigenvalue,
and thea-axis. We must keep in mind, however, that so far we have operated with
the complex dielectric tensor as a whole, without separating it into real and imaginary
components. Rêε and Imε̂ cannot be in general diagonalized in one system of real
coordinates [15], but the complex tensor can be diagonalized in the basis of complex vectors
eu andev (see section 4), whosex- andz-components may be shifted in phase. Therefore,
the value ofϕ defined by the formula (8) is generally complex. To describe the rotations
of the axes by true angles, we have separated the real and imaginary parts ofε̂ (the latter is
proportional to the optical conductivity: Im̂ε = 4πσ̂/ω), and calculated the corresponding
anglesϕR andϕI using formulas like (8):

tan 2ϕR = 2 Reεxz

Reεxx − Reεzz

tan 2ϕI = 2 Imεxz

Im εxx − Im εzz

. (17)

In other words,ϕR and ϕI are angles between thea-axis and the principal axes of Reε̂

and Imε̂, corresponding to the maximal tensor eigenvalue in theac-plane. The frequency
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dependences of these angles are shown in figure 5. Equations (17) define angles accurate
to π/2; therefore the choice of solutions for different spectral ranges was determined by
the continuity of the resulting function. From figure 5 we can see that: (i) the effect of
axis rotation in theac-plane inα-Bi2O3 is substantial; (ii) the principal axes of Reε̂ and
Im ε̂ are not collinear (with the exception of at several frequency points, where the curves
for ϕR andϕI intersect). Neglect of the principal axis rotation would result in errors in the
determination of the phonon characteristics.

6. Conclusion

For the first time infrared reflectance spectra of single-crystalα-Bi2O3 have been reported
for different directions and polarizations of the incident wave. A method is proposed for
classification of vibrational TO modes and determination of their characteristics, including
the orientation of the dipole momentum. It is an extension of the conventional dispersion
analysis of IR reflectance spectra to the case of a monoclinic lattice with non-fixed principal
dielectric axes. According to this method, the characteristics of Bu modes are determined
by the simultaneous treatment of three reflectance spectra for different orientations of the
electric field within theac-plane on the basis of relations for the reflectivity derived in
section 4. Using this procedure we have obtained and classified almost all of the optical
phonons inα-Bi2O3. Our measurements revealed large anisotropies of dielectric properties
of α-Bi2O3: Bu modes turned out to be several times more intense than Au modes. This
means that dipole moments arising in theac-plane from displacements of Bi and O atoms
are markedly larger than those appearing parallel to theb-axis. The data obtained can
be utilized as a reference forα-Bi2O3 lattice dynamic modelling and interatomic potential
adjustment. The calculated values of the static dielectric tensor component are useful for
understanding anisotropic elastic properties of single-crystalα-Bi2O3.
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